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TECHNICAL MEMORANDUM 1406

ON THE USE OF THE HARMONIC LINEARIZATION METHOD IN THE
AUTOMATIC CONTROL THEORY *
By E. P. Popov

The method of harmonic linearization (harmonic balance), first
proposed by N. M. Krylov and N. N. Bogolyubov (ref. 1) for the approxi-
mate investigation of nonlinear vibrations, has been developed and re-
eived wide practical application to problems in the theory of automatic
control (refs. 3 to 6). Recently, some doubt has been expressed on the
legitimacy of application of the method to these problems, and assertions
were made on the absence in them of a small parameter of any kind. Never-
theless, the method gives practical, acceptable results and is a simple
and powerful means in engineering computatations. Hence, the importance
of questions arises as to its justification. The underlying principle of
the method is the replacement of the given nonlinear equation by a linear
equation. In establishing the method, a small parameter is considered
whose presence makes it possible to speak, with some degree of approxi-
mation, of the solution of this new equation to the solution of the given
nonlinear equation. In an article by the author (ref. 7), certain con-
siderations were given on the presence of the small parameter, but this
question has not as yet received a final answer. In the present report,
a somewhat different approach to the problem is applied that permits:

(a) establishing, in the clearest manner, the form of the presence of

the small parameter in nonlinear problems of control theory, solvable by
the method of harmonic linearization; (b) connecting it with previous
intuitive physical concepts (with the "filter property") and extending
the class of problems possessing this property; and (c) discussing various
generalizations of the method.

The free motion (transition process and autovibration) for a very

wide class of nonlinear systems of automatic control (ref. 7) are
described by differential equations of the form

a(p)x + R(p)F(x,px) = O ( = -%) (1)

* M"Y voprosu o primenenii metoda harmonicheskoi linearizatsii v teorii
regulirovaniya." Doklady Akademii Nauk (SSSR), vol. 106, no. 2, 1956, pp.
211-214.
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where Q(p) and R(p) are polynomials of any degree, of which some re-
guired properties will be established in the following paragraphs, and
F(x,px) is a given nonlinear function possible only with respect to as-
sumptions of the most general character. However, in problems of the
theory of control, no assumptions must be made as to the smallness of
the nonlinear function F(x,px) or to its small difference from a linear
function. In order to render explicit the form in which it would be
possible to write a small parameter in equation (1), we shall proceed.as
follows.

Let equation (1) have a periodic solution or a solution approximately
periodic differing slightly from the sinusoidal. We write this solution
in the form

x=x" +ey(t) x* = a sin wt (2)
where € denotes a small parameter, and y(t) denotes an unknown bounded

function of time. In the case of the existence of a periodic solution,
we write

eyft) = ciak sin(kat + @) (3)
k=2

We represent the given nonlinear function F(x,px) in the form
*
F(x,p) = F(x*,px¥) + [F(x* + ey, px* + epy) -F(xTpx)]  (4)

Expanding the two components separately in a Fouriler series, we obtain

o0 o0
B .
F(x,px)=qo+Q&+aI>s:Lna)t+§ Fk+6§ ¢ (s)
k=2 k=0
where qg5, A, and B are the coefficients of the initial term, the sine,
and cosine terms, rexpectively, the cosine being replaced by a% p sin wt

of the expansion of the function F(x*,px*) in a Fourier series, ZFk
denotes all the higher harmonics of the expansion of F(x¥*,px¥) in a
Fourier series (they must not be considered small, since the nonlinearity
is not small) where we write

Fi = b sin (kwot +¥y) (k =2, 3, . ..,) (6)

52<I>k denotes all the terms of the expansion in a Fourier series of all

the expressions shown in brackets in formula (4). This entire expression
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is written with a small parameter which, according to equation (4), is
small if the derivatives OF/dx and OF/Opx are finite. This expression
is also computed as small in the case of certain discontinuous nonlinear
characteristics (e.g., the Raleigh type where the preceding derivatives

at the points of discontinuity are delta functions). We may write

e®, = ec, sin(kwt f”k) (k =0, 1, 2, . . ., (7)

We substitute equations (2) and equation (4) in the given equation (1),
so that '

| Q(p)x™* + Q(pley +

R(p)ag + R(p)kA + % 1» sin wt + R(p)ei Fy + R(p)eiék =0 (8)
k=2 k=0

Since the equation must be satisfied identically, we separately
equate to zero all coefficients with the same order harmonic. We note
that formula (8), in the case of the existence of a periodic solution,
is exact.

From the equating of the zeroth harmonics of equation (8), there is
obtained with an accuracy up to €& the relation

2n
9Q = %;\/N F(a sin u, aw cos u) du = 0 (u = wt) (9)
0
which is a certain general requirement for F(x,px).

From the equating of the first harmoics of equation (8), taking
account of equations (2) and equation (7), we have '

a sin wt = - ,\/A2+B2I—;‘-Eji:—z))%-

%%E)l sin (wt + 99 + B) (10)

sin (wt + v + B) -

ECl

where y and B are arguments of the expressions A + 1B and
R(iw)/Q(iw). On the basis of the exact equation (10), we obtain the
following approximation (with an accuracy up to €): .

a = ofa2 + B2 [R{10)

e T+B = (11)
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It is here assumed that the polynomial Q(p) in equation (1) does not
have purely imaginary roots.

From the equating of the higher harmonics of equation (8), consider-
ing equations (3), (6), and (7), we have

€ay sin(kwt +<Pk)

~ i R{ikw
e )

where B) denotes the argument of the expression R(ikw)/Q(ikw).

sin(kot + ¥ + B )-€cy sin(kwt + 34y + B) (12)

It is thus seen that i1f Ty 1s not small, the magnitude
|R(ikw)/Q(ihwﬂ should be of the order of €. The last component in
equation (12) will then be of the order €2. From the exact equation
(12), we obtain the following approximate equation (with an accuracy up
to €):

R(ikw)

e Y + B ® (13)

eay = bk

Comparing formulas (13) and (11) we see that, for example, the wish
to have in the solution (see egs. (2) and (3))

1;/ (ea,)? << a2 (12)

leads to the need of satisfying, in the given equation (1), the following

requirement:
oD

R (iko 2

2 .
2 2v [ R{iw)
Qikay| S (A% + 3B )I (15)

Q(iw)

where its satisfying in the concrete system can be checked after w is
obtained. The degree of Q(p) should, in any case, be higher than that

of R(p). A particular case of the general expression (15) is intuitively
the earlier introduced "filter property" of the linear part.

Thus, condition (15) has been obtained and must be satisfied by the
coefficients of the given differential equation (1) in order that a pe-
riodic solution, if it exists, may be approximately determined in the
form of sinusoids in the presence of a "strong" nonlinearity of F(x,px).
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- The equation for its approximate determination according to equation (8)

with the substitution of sin wt = x*/a, assumes the form

q
[Q(p) + R(p) (q + I)] x* =0 (16)
where
. o
q = % = ﬁg F(a sin u, aw cos u)sin u du
0

an

q = g = %ﬁ F(a sin u, aw cos u)cos u du (17)

The replacement of equation (1) by equation (18) with its subsequent
investigation by the linear methods is called harmonic linearizatiom.
This is formally equivalent to following the mode of writing the initial
equation (1) with a small parameter, so that

a(e)x + R(p) (2 + 2L 9 x + exlxp) = 0 (16)

where, according to equation (8), we may write

e £(x,p) = R(p) iFk +ez@k -{q +%—)]-'- pley
k=2 k=0

where the first term of the three terms shown in brackets, taken sepa-
rately, is not small. The smallness of the function ef(x,p) is acquired
only with the factor R(p) owing to the property of equation (15).

There has thus been found the form of the presence of the small
parameter ¢ in the equations of nonlinear systems of automatic control
required for the application of the method of harmonic linearization
(this also refers to the first approximation of the method of small pa-
rameter which, according to reference 7, coincides with the given method) .
The writing of equation (1) with small parameter in the form of equation
(18) is valid in the region of the existence of equation (2).

For definiteness we shall assume that the polynomials R(p) and
Q(p) are such that the characteristic equation (eq. (16)) has all positive
coefficients, and that the quotient of the division of the entire left
side of equation (18) by p? + w? satisfies the criterion of Hurwitz.
It may then be said that the given nonlinear system (eq. (1)) for the
existence of the periodic solution (eq. (2)) is close to the equivalent
linear system which is on the boundary of stability, except for the
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circumstance that the linear system is different for various periodic
solutions (because of a change in the coefficients ¢ and %4 from one
periodic solution to another, since g and 94 depend on the amplitude
a and the frequency  of the required solution). Thus, evidently, the
equation of the first approximation (eq. (16)) is nonlinear if one speaks
of the combination of all possible periodic solutions for different values
of the coefficients of the polynomials R and Q (i.e., for different
parameters of the system), and is linear only for each given periodic
solution (along the given solution). Such is the property of the method
of harmonic linearization in its application to systems with "strong"
nonlinearity.

By writing the given equation (1) in the form of equation (8) all
the variants of the method of harmonic balance in control theory and all
generalizations of the method also become easily understandable.

A similar reasoning may also be developed for the application of the
method of ‘N. N. Bogolyubov (ref. 2) to the investigation of transient
vibrational processes in certain nonlinear systems of control.
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